Improved Precision of Δ^{17}O Measurements by Laser Spectroscopy

Lindsey Davidge, Eric Steig, Andrew Schauer

with Tyler Jones, Valerie Morris, Bruce Vaughn (INSTAAR)

Δ^{17}O and dxs reflect kinetic fractionation

Δ^{17}O and dxs are calculated from corresponding measurements of δ^{17}O and δ^{18}O or δ^D and δ^T respectively. Both Δ^{17}O and dxs record the difference from equilibrium fractionation behavior. Kinetic fractionation records from ice cores can inform past hydrologic cycle conditions.

Δ^{17}O should provide new hydrologic cycle information

Δ^{17}O should reflect different climatic conditions than dxs:
- Δ^{17}O is less sensitive to temperature than dxs
- Δ^{17}O observations are strongly correlated to humidity at low latitudes
- Improved spatial and temporal resolution of corresponding Δ^{17}O and dxs records are needed to better understand the implications of Δ^{17}O for paleoclimate.

Our goal: improve precision for Δ^{17}O, maintain high resolution

- Δ^{17}O measurement precision at South Pole is as good as 6 per meg, but consistently only <12 per meg
- Duplicate core measurements suggest some high-frequency signals are reproducible, but signal-to-noise ratio could be improved (see inset, above)

References

New CFA system was designed to optimize Δ^{17}O measurement

- Custom vaporizer uses low-volume flash vaporizer tee (Gkinis et al., 2010) to minimize memory effects and ensure instantaneous sample evaporation
- Bubbles and particulate (>0.2μm) are removed, then sample is metered into vaporizer by peristaltic pump

Improved Δ^{17}O measurement precision

- Consistently achieves <6 per meg precision for Δ^{17}O with 4000s integration time
- Currently using new CFA system to test reproducibility of measured Δ^{17}O from ice cores

Data from the South Pole ice core shows great potential for high-resolution Δ^{17}O measurements:
- Δ^{17}O shift during glacial-interglacial transition generally agrees with modeled expectations
- Duplicate ice core measurements generally agree within 12 per meg (1σ)

CFA-CRDS improves Δ^{17}O measurement efficiency & measurement resolution

- Δ^{17}O measurements:
 - Δ^{17}O shift during glacial-interglacial transition generally agrees with modeled expectations
 - Duplicate ice core measurements generally agree within 12 per meg (1σ)

Improved spatial and temporal resolution of corresponding Δ^{17}O and dxs records are needed to better understand the implications of Δ^{17}O for paleoclimate.