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Figure 5. Percent change in boundary layer oxidant concentrations in the 
present day relative to the preindustrial
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Impact of oxidant changes on Δ17O(SO4
2-) and 

comparison with ice core observations
Calculated global mean changes in tropospheric OH (-9%), 
O3 (+42%) and H2 O2 (+58%) in the present day relative to 

the preindustrial are consistent with previous modeling 
studies (see also Figure 1).

Sulfate formed via metal catalyzed oxidation is dominated 
by anthropogenic metal emissions in mid- to high-northern 
latitudes in the present day, and represents up to ~half of 

(annual mean) total sulfate formation.

Figure 6. Annual mean fraction of total sulfate at the surface formed via metal 
catalyzed oxidation (Figure 4 from Alexander et al. [2009]).

The fraction of sulfate formed in the gas-phase, important 
for direct and indirect radiative forcing of sulfate aerosols, 
does not change despite large changes in the sulfur and 

oxidant budgets.
Table 2. Calculated sulfur budget in the present day and preindustrial.

Table 3. Change (‰) in Δ17O(SO4
2-) in the present day relative to the preindustrial.  

Measurement uncertainty in the observations is ±0.3‰.

abase scenario includes S(IV) oxidation by OH, H2 O2 and O3
bAlexander et al. [2004] (see Figure 3)
cMcCabe et al. [2006] (see Figure 3)
dKunasek et al., manuscript in prep.(see Figure 4)
eerror represents the 1σ  standard deviation of the preindustrial observations

• A decrease in modeled Δ17O(SO4
2-) (-0.7‰) in Greenland in the present day relative to the preindustrial is consistent 

with the Greenland ice core record (-0.7±0.4‰) [Alexander et al., 2004].  The unexpected decrease in Δ17O(SO4
2-) on 

this timescale is explained by the rising dominance of metal catalyzed S(IV) oxidation from anthropogenic metal 
emissions, despite large increases in O3 concentrations (50%) in the northern hemisphere.

• A small decrease in modeled Δ17O(SO4
2-) (-0.2‰) in Antarctica in the present day relative to the preindustrial is 

consistent with a small change in the Antarctic observations (+0.2±0.5‰) [Kunasek et al., manuscript in prep.].  The 
lack of a significant change in Antarctic Δ17O(SO4

2-) on this timescale is consistent with simultaneous increases in O3 
(32%) and H2 O2 (49%) concentrations in the southern hemisphere which have opposing effects on Δ17O(SO4

2-).
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Figure 7. Δ17O(SO4
2-) and δD over a full glacial-interglacial cycle from the 

Vostok ice core (Figure 1 from Alexander et al. [2002]).

Δ17O(SO4
2-) from the Vostok ice core shows large (3.5‰) 

changes on the glacial-interglacial timescale, consistent 
with increased OH (and CH4 sink) during the last glacial.

Modeled changes in OH and O3 in the LGM relative to the 
preindustrial show large disagreement among different 

studies.

Figure 8. Modeled percent change in global-mean tropospheric OH and O3 
concentrations in the LGM relative to the P.I.

In collaboration with Loretta Mickley, Gavin Schmidt, Jed Kaplan and others, we are simulating oxidant 
concentrations and Δ17O(SO4

2-) on the glacial-interglacial timescale using an offline coupling between GEOS-Chem 
(CTM), GISS ModelE (GCM), and BIOME-4 (global terrestrial vegetation model). We are testing the sensitivity of 
Δ17O(SO4

2-) to changes in oxidants on this timescale in order to provide an observational constraint for oxidant 
concentrations in the past.

Table 1. GEOS-Chem model configuration for the preindustrial and present day.

We use the GEOS-Chem model [Bey et al., 
2001], a global 3D chemical transport model 
driven by assimilated meteorology at 4ºx5º 
horizontal resolution and 30 sigma vertical 

levels, to simulate oxidant concentrations and 
Δ17O(SO4

2-) in the present day and preindustrial 
time periods.

Figure 3. Δ17O(SO4
2-) and Δ17O(nitrate)  since 1680 A.D. from Greenland ice 

core and snowpit and Arctic aerosol observations (produced using data from 
Alexander et al. [2004], McCabe et al. [2006] and Kunasek et al. [2008]).

Figure 4. Raw Δ17O(SO4
2-) and Δ17O(nssSO4

2-)  since 1770 A.D. from the West 
Antarctic Ice Sheet (WAIS) Divide ice core (Figure 2 from Kunasek et al., 

manuscript in prep).  Note: k values represent different assumptions regarding 
the SO4

2-/Na+ ratio in sea-water.
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Arctic Δ17O(SO4
2-) ice core and aerosol observations show an 

unexpected decrease throughout the industrial period.  This 
decrease is unexpected due to known increases in O3 

concentrations over this time period.

Antarctic Δ17O(SO4
2-) ice core observations show a 

small increase from the mid- to late-1700s leveling 
off in the mid- to late-1800s.  The timing of the 

increase is coincident with increases in southern 
hemisphere biomass burning [Marlon et al., 2008].
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Figure 1. Modeled percent change in annual-mean tropospheric OH and O3 
concentrations in the present day relative to the preindustrial from different studies.

The oxidation capacity of the atmosphere (usually defined 
by global mean OH abundance) has large implications for 
GHG (e.g. CH4 ) and pollutant (e.g. CO) concentrations. 

Little to no information exists on how oxidant abundances 
have varied in the past.  Hence we rely on models; 

however, modeled changes in OH and O3 in the past show 
disagreement among different studies due to large 

uncertainties in emissions of O3 precursors.

Δ17O = 0‰

Δ17O = 1‰

Δ17O = 9‰

Δ17O = 0‰

Figure 2. S(IV) oxidation pathways and their corresponding Δ17O(SO4
2-) values (Δ17O = 

δ17O – 0.5 x δ18O) [Savarino et al., 2000].

The Δ17O value of sulfate and nitrate from ice cores 
currently provides the most promising proxy for paleo 
oxidant concentrations.  The Δ17O value of sulfate is a 

function of the relative importance of its various oxidation 
pathways, which is in large part determined by 

atmospheric oxidant abundance (in addition to pH and 
liquid water content of clouds).  It can also be used as an 

indicator of the relative importance of gas- versus 
aqueous-phase sulfate formation, which has implications 

for the direct and indirect forcing of sulfate aerosol.

We use a global chemical transport model constrained by observations of ice cure sulfate oxygen isotopes to simulate 
anthropogenic impacts on oxidant (OH, O3 , H2 O2 ) and sulfur budgets.  The Arctic ice core sulfate O-isotope 
observations are insensitive to changes in oxidant concentrations on the preindustrial-industrial timescale due to the 
rising importance of metal catalyzed S(IV) oxidation in mid- to high-northern latitudes resulting from anthropogenic 
metal emissions.  The small change in Antarctic ice core sulfate O-isotope observations on this timescale are 
consistent with simultaneous increases in boundary layer O3 (32%) and H2 O2 (49%) concentrations in the southern 
hemisphere, which have opposing effects on the sulfate O-isotope anomaly.  Despite large changes in global oxidant 
abundances and sulfur emissions since preindustrial times, the relative importance of gas- versus aqueous-phase 
sulfate formation has remained constant.
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