
1. CO2 (known δ18O, unknown δ17O) from 
breakseal frozen in LN2 cup

2. O2 (known δ18O and δ17O) from cylinder ex-
panded into full volume for 30 seconds, and 
yields pressure very similar to CO2. Hot reac-
tor is isolated and remaining O2 pumped away

3. Thaw LN2 cup, and allow O2 and CO2 to ex-
change for 1 hour

4. Freeze LN2 cup, and transfer O2 to cold 
finger with 5A molecular sieve 

5. Thaw LN2 cup, and transfer CO2 to Pyrex 
breakseal

6. Gases to respective IRMSs
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How does carbonate ∆17O relate to source waters? 
Examples from biogenic and abiogenic minerals

Abstract
• The 17O excess (∆17O) of surface 
waters can largely be explained by 
Rayleigh fractionation and evapora-
tion where:

∆17O = ln(δ17O+1)-0.528 ln(δ18O+1)

• Carbonate ∆17O is a potential 
proxy for past variations in these 
hydrological variables.

• Passey et al. (2014) present a 
method to calculate ∆17O of parent 
waters from carbonate ∆17O, but 
could not evaluate if it was unique 
to their analytical protocol

• We demonstrate the efficacy of the 
Passey et al. approach using a dis-
tinct preparatory approach

• The precision with which ∆17O can 
be measured will be the major lim-
itation of ∆17O paleohydrology for 
the foreseeable future 
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• An ideal natural laboratory with sharp hydrolog-
ic gradients
• Tap water approximates annual average precipi-
tation δ18O (Bowen et al. 2007)
 

• Evaluate the primary controls of ∆17O
• 34 waters measured via fluorination/IRMS 
(Schoenemann et al., 2013) and CRDS (Steig et al., 2014)

          ∆17O ~ f (Rayleigh, evaporation) + ε 

Motivation: ∆17O variations along a natural hydrologic gradient
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Methods Preliminary results, and comparison with previous work

~1 week > 10ºC  
~1 month <10ºC

Thermal and isotopic 
equilibration at ~4, 

23 and 45ºC

Abiogenic precipitation from fluids evaporatively altered ∆17O

        4.4 g CaCl • 6H2O      1.7g NaHNO3          Mix solutions
       in 100 ml of water    plus CA in same        Passive degassing with stirring 
       with ∆17O = -14 or        ∆17O altered            precipitate ~1 week > 10ºC
             -84 permeg    water             precipitate ~1 month < 10ºC

Preparatory
• ~8 mg calcite digested in 90ºC phosphoric acid to produce CO2

• CO2 - O2 isotope exchange at 750ºC, catalyzed by platinum (Mahata et al., 2013;Barkan et al., 2015)

• “Pump” bellows when introducing O2 to the IRMS:
  9 x [3 x (100%, 3 sec, 25%, 3 sec); 180 sec]  (Laurence Yeung, personal comm.)

Calculation of initial CO2 δ17O following Barkan et al. (2015)

where beta is molar CO2/O2 ratio

and              is assumed to be 0.5964 (Barkan et al., 2015)  

• λ combines many fractionations and has 
been suggested to vary with:
 - CO2-O2 conversion method
 - temperature
• We calculate 0.5242 at 45ºC (star), which 
is very similar to previous values at lower T 
using a different protocol (blue; Passey et al., 

2014; Ji, 2016) 

• No obvious λ T-dependence
 
• Reconstructed parent water ∆17O generally 
within error of measured

• We extend the demonstrated accuracy 
range of the method by ~40 per meg
• No obvious difference between abiogenic 
and biogenic carbonates

∆17O per meg
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Conclusions, challenges and future work
• Tap waters spanning large gradients in humidity and precipitation amount can be suffi-
ciently explained by Rayleigh distillation of precipitation and subsequent evaporation 

• The University of Washington now has carbonate ∆17O capabilities with the potential 
to facilitate paleohydrological reconstructions from geological archives, although im-
proved precision and interlaboratory comparison is warranted. 

• The ∆17O of abiogenic calcite precipitated from fluid of known ∆17O shows the same λ  
as lake marls and biogenic carbonates despite being generated using a different prepara-
tory approach.

• This suggests a range of carbonates may be promising targets for paleo-proxy work, 
limited primarily by ∆17O analytical error, and secondarily by 103lnα estimation 
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             O2-i         O2-f       CO2-i CO2-f CO2-i   
      δ17O δ18O δ17O δ18O δ18O δ18O δ17O beta      ∆17O  ∆17O (permeg)
17OB245_20170806 11.66 22.88 18.89 36.76 49.67 38.31 25.71 1.22 -0.0002066  -207
17OB245_20170808 11.66 22.88 19.67 38.16 49.67 39.20 25.77 1.46 -0.0001553  -155

average = -181 ± 36

Calculation of parent water ∆17O (Passey et al., 2014)

from measured δ18Ow and δ18Oc = ln(17αO2/CaCO3-H2O) / ln(17αO2/CaCO3-H2O)

n = 17
mean =0.5246
s.d. = 0.0004
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