How does carbonate Δ¹⁷O relate to source waters? Examples from biogenic and abiogenic minerals

Casey Saenger^{1,2}, *csaenger@uw.edu*

Andrew Schauer², Julia Kelson², Keith Hodson², Katharine Huntington², Eric Steig², Anne Gothmann^{1,3} Karen Valladares¹

1. Joint Institute for the Study of the Atmosphere and Ocean, University of Washington 2. Department of Earth and Space Sciences, University of Washington 3. University of Washington School of Oceanography

Motivation: Δ^{17} O variations along a natural hydrologic gradient Abstract • The ¹⁷O excess (Δ^{17} O) of surface waters can largely be explained by Rayleigh fractionation and evaporation where: 47 46 $\Delta^{17}O = \ln(\delta^{17}O + 1) - 0.528 \ln(\delta^{18}O + 1)$ 45 δ¹⁸O (‰) Δ^{17} O per me cale) 60 Marine vapor -5 22 25 28 31 34 37 40 44 • Carbonate Δ^{17} O is a potential -124 -122 -120 -124 -122 -120 (not low humidit proxy for past variations in these high humidity δ^{,17}Ο hydrological variables. -10 50 **0.94** eg) $^{17}\text{O-excess} = \delta'^{17}\text{O} - 0.528 * \delta'^{18}$ • Passey et al. (2014) present a

method to calculate Δ^{17} O of parent waters from carbonate Δ^{17} O, but could not evaluate if it was unique to their analytical protocol

• We demonstrate the efficacy of the Passey et al. approach using a distinct preparatory approach

• The precision with which Δ^{17} O can be measured will be the major limitation of Δ^{17} O paleohydrology for the foreseeable future δ'¹⁸O (not to scale)
An ideal natural laboratory with sharp hydrologic gradients

• Tap water approximates annual average precipitation $\delta^{18}O$ (Bowen et al. 2007)

Evaluate the primary controls of Δ¹⁷O
34 waters measured via fluorination/IRMS (Schoenemann et al., 2013) and CRDS (Steig et al., 2014)

 Δ^{17} O ~ f (Rayleigh, evaporation) + ε

Methods

Preliminary results, and comparison with previous work

	O ₂ -i		O ₂ -f		CO ₂ -i	CO ₂ -f	CO ₂ -i				
	δ^{17} O	δ ¹⁸ Ο	δ^{17} O	δ^{18} O	$\delta^{18} ar{O}$	$\delta^{18} ar{O}$	$\delta^{17} \bar{O}$	beta	$\Delta^{17}O$	Δ ¹⁷ O (permeg)	
7OB245_20170806	11.66	22.88	18.89	36.76	49.67	38.31	25.71	1.22	-0.0002066	-207	
7OB245_20170808	11.66	22.88	19.67	38.16	49.67	39.20	25.77	1.46	-0.0001553	-155	
									average = -181 ± 36		

Calculation of parent water Δ^{17} **O** (Passey et al., 2014) $\Delta^{17}O_{H2O} = \Delta^{17}O_{(O2/CaCO3)} + 10^{3}\ln\alpha_{(O2/CaCO3)-(O2/H2O)} \times [0.528 - \lambda_{(O2/CaCO3)-(O2/H2O)}]_{c}$ from measured $\delta^{18}O_{\mu}$ and $\delta^{18}O_{\mu}$ $= \ln({}^{17}\alpha_{O2/CaCO3-H2O}) / \ln({}^{17}\alpha_{O2/CaCO3-H2O})$

-84 permeg

precipitate ~1 month < 10°C

Preparatory

• ~8 mg calcite digested in 90°C phosphoric acid to produce CO_2

water

• CO₂ - O₂ isotope exchange at 750°C, catalyzed by platinum (Mahata et al., 2013;Barkan et al., 2015)

1. CO_2 (known $\delta^{18}O$, unknown $\delta^{17}O$) from breakseal frozen in LN2 cup

2. O_2 (known $\delta^{18}O$ and $\delta^{17}O$) from cylinder expanded into full volume for 30 seconds, and yields pressure very similar to CO_2 . Hot reactor is isolated and remaining O_2 pumped away

3. Thaw LN2 cup, and allow O_2 and CO_2 to exchange for 1 hour

4. Freeze LN2 cup, and transfer O_2 to cold finger with 5A molecular sieve

5. Thaw LN2 cup, and transfer \rm{CO}_2 to Pyrex breakseal

6. Gases to respective IRMSs

measured Δ^{17} Ow (per meg)

\bullet λ combines many fractionations and has been suggested to vary with:

- CO_2 - O_2 conversion method
- temperature

• We calculate 0.5242 at 45°C (star), which is very similar to previous values at lower T using a different protocol (blue; Passey et al., 2014; Ji, 2016)

• No obvious λ T-dependence

• Reconstructed parent water Δ^{17} O generally within error of measured

- We extend the demonstrated accuracy range of the method by ~40 per meg
- No obvious difference between abiogenic and biogenic carbonates

Conclusions, challenges and future work

• Tap waters spanning large gradients in humidity and precipitation amount can be sufficiently explained by Rayleigh distillation of precipitation and subsequent evaporation

• "Pump" bellows when introducing O₂ to the IRMS: 9 x [3 x (100%, 3 sec, 25%, 3 sec); 180 sec] (Laurence Yeung, personal comm.)

Calculation of initial CO₂ δ^{17} O following Barkan et al. (2015)

$$\delta^{17}O_{in}(CO_2) = \frac{1}{\beta} \left[\left(\delta^{17}O_f(O_2) + 1 \right) \left(1 + {}^{17}\alpha\beta \right) - \left(\delta^{17}O_{in}(O_2) + 1 \right) \right] - 1$$

where beta is molar CO_2/O_2 ratio

 $= \frac{\ln^{17} \alpha_{\rm CO_2/O_2}}{\ln^{18} \alpha_{\rm CO_2/O_2}}$

$$\beta = \frac{\delta^{18}O_{in}(O_2) - \delta^{18}O_f(O_2)}{\delta^{18}O_f(CO_2) - \delta^{18}O_{in}(CO_2)}$$

and
$$\theta_{ss}$$

is assumed to be 0.5964 (Barkan et al., 2015)

- The University of Washington now has carbonate Δ^{17} O capabilities with the potential to facilitate paleohydrological reconstructions from geological archives, although improved precision and interlaboratory comparison is warranted.
- The Δ^{17} O of abiogenic calcite precipitated from fluid of known Δ^{17} O shows the same λ as lake marls and biogenic carbonates despite being generated using a different preparatory approach.
- This suggests a range of carbonates may be promising targets for paleo-proxy work, limited primarily by Δ^{17} O analytical error, and secondarily by $10^3 \ln \alpha$ estimation

Acknowledgements: We are endebted to Eugeni Barkan, Boaz Luz and Ben Passey for their continued openness, advice and patience in support of this project

References:

Barkan et al., 2015. High-precision measurements of δ^{17} O and 17 O excess of NBS19 and NBS18. RCMS. doi: 10.1002/rcm.7378

Luz and Barkan, 2010. Variations of ¹⁷O/¹⁶O and ¹⁸O/¹⁶O in meteoric waters. GCA. doi: 10.1016/j.gca.2010.08.016

Ji, 2016. Triple oxygen isotopes in lake waters, lacustrine carbonates and pedogenic carbonates: An indicator for evaporation. JHU Ph.D thesis

Mahata et al., 2013. Oxygen isotope exchange between O_2 and CO_2 over hot platinum: An innovative technique for measuring $\Delta^{17}O$ in CO_2 . Analytical chemistry. doi: 10.1021/ac4011777

Mahata et al., 2016. An improved method of high-precision determination of Δ^{17} O of CO₂ by catalyzed exhange with O₂ using hot platinum. RCMS. doi: 10.1002/recm.7423 Passey et al., 2014. Triple oxygen isotopes in biogenic and sedimentary carbonates. GCA. doi: 10.1016/j.gca.2014.06.006

Schoenemann et al., 2013. Measurement of SLAP2 and GISP δ¹⁷O and proposed VSMOW-SLAP normalization for δ¹⁷O and ¹⁷O excess. RCMS. doi: 10.1002/rcm.6486 Steig et al., 2014. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmospheric Measure ment Techniques. doi: 10.5194/amt-7-2421-2014