# **17O-Excess Measurements of Water Without Fluorination Using Optical Spectroscopy**

G. Hsiao (1), J. Hoffnagle (1), V. Gkinis (2), E.J. Steig (3), B. Vaughn (4), S. Schoenemann (3), and A. Schauer (3)

- (1) Picarro Inc., Santa Clara, United States
- (2) Center for Ice and Climate, Niels Bohr Institute, Copenhagen Denmark
- (3) Department of Earth and Space Sciences and Quaternary Research Center,
- University of Washington Seattle, USA,

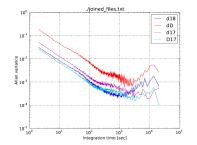
(4) Institute for Arctic and Alpine Research, University of Colorado, Boulder, USA

#### Background

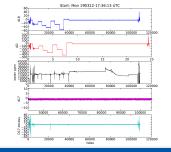
 $H_2^{17}O$  is the third most abundant isotope of water, making up about 1 in every 2600 molecules of sea water. Meijer and Li performed electrolysis of water to generate  $O_2$  from natural waters in 1998 and concluded  $^{17}O$  fractionation is completely analogous to that of  $^{18}O$  [1]. Barkan and Luz performed a similar measurement using CoF<sub>3</sub> treatment of  $H_2O$  to generate in 2005 [2]. Based on their measured fractionation factor  $\lambda$  they proposed the definition of  $^{17}O$  excess as:

<sup>17</sup>O excess =  $\ln(\delta^{17}O + 1) - 0.528(\delta^{18}O + 1)$ .

#### **Experimental**

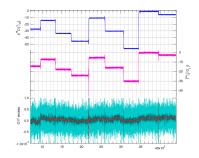

Recent advances in instrumentation allow the measurement of  $H_2^{17}O$  directly as a water molecule. By coupling CRDS optical isotope measurements [3] with a continuous vaporization device shown below [4] it should be possible to measure <sup>17</sup>O excess directly from ice cores. This offers a more precise means to isolate the influence of diffusive processes since <sup>17</sup>O excess is only very weakly influenced by temperature-dependent equilibrium processes.



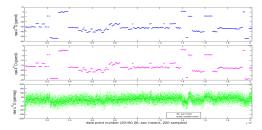

The analyzer used in this study was based on a commercial design from Picarro. The addition of extra optical components enabled measurements of absorption peaks unique to H<sub>2</sub><sup>17</sup>O in the region around 1400 nm. Rapid scanning and switching of optical regions was used to measure the concentrations of H<sub>2</sub><sup>16</sup>O, H<sub>2</sub><sup>16</sup>O, H<sub>2</sub><sup>17</sup>O, HD<sup>16</sup>O and by calculation their isotopes ratios and <sup>17</sup>O excess.

### **Continuous Measurements**

To quantify analytical precision and stability a continuous water vapor of constant isotopic composition and concentration for several hours. The variation in the signal of the individual isotope ratios and <sup>17</sup>O excess is shown in Figure 2 below.

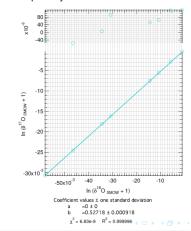



Different meteoric waters including depleted working standards were run in this fashion over the course of several hours. The signals for  $\delta^{18}O$ ,  $\delta^{17}O$ , water concentration and  $^{17}O$  excess are shown in Figure 3 below.




# Sample Analysis

A range of meteoric waters were run in this fashion over the course of several hours. The signals for  $\delta^{18}O$ ,  $\delta^{17}O$  and  $^{17}O$  excess are shown in Figure 4 below.




The signals for <sup>17</sup>O excess were quite small as expected. In terrestrial samples reported values of <sup>17</sup>O excess are below 40 per meg. A handful of IRMS laboratories worldwide perform <sup>17</sup>O excess measurements with the application required precision of 5 per meg, an example of such a measurement is shown in Figure 5 below.



## Fractionation Factor $\lambda$

By plotting the relationship of  $\delta^{10}$ O and  $\delta^{17}$ O and  $^{17}$ O over a range of meteoric waters we measured  $\lambda$  to be 0.52718, this is the first known measurement of  $\lambda$  performed using optical isotope analysis.



### **Conclusions and Future Work**

 $^{17}\text{O}$  excess of natural waters were rapidly measured using CRDS with a  $\lambda$  value in agreement with all previous studies. The simplicity of this measurement could radically transform measurements of  $^{17}\text{O}$  excess. However standards for such measurements must still be agreed upon internationally.

1. Meijer and Li, Isotopes in Environmental Health Studies 34:4, 349-369 (1998) 2. Barkan and Luz, Rapid Comm. Mass. Spec. 19, 3737-3742 (2005)

- Crosson et al, Appl. Phys. B Laser Optics 92, 403-408 (2008)
- 4. Gkinis et al, Atmos. Measur. Tech. Disc. 4, 4073-4101 (2011)

EGU2012-12706 . This work is a collaborative research engagement between Center for Ice and Climate, University of Washington, INSTAAR and Picarro. © 2012