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Δ17O and dxs reflect kinetic fractionation

Δ17O should provide new hydrologic 
cycle information

Δ17O and dxs are calculated 
from corresponding 
measurements of δ17O and 
δ18O or δD and δ18O, 
respectively. Both Δ17O and 
dxs record the difference from 
equilibrium fractionation 
behavior. Kinetic fractionation 
records from ice cores can 
inform past hydrologic cycle 
conditions.

Δ17O should reflect different 
climatic conditions than dxs:

• Δ17O is less sensitive to 
temperature than dxs

• Δ17O observations are 
strongly correlated to 
humidity at low latitudes

• Improved spatial and 
temporal resolution of 
corresponding Δ17O and 
dxs records are needed to 
better understand the 
implications of Δ17O for 
paleoclimate.

New CFA system was designed to 
optimize Δ17O measurement

CFA-CRDS improves Δ17O measurement 
efficiency & measurement resolution

GLACIAL PERIOD HOLOCENE

Steig et al., in prep

Data from the South Pole ice core shows great potential 
for high-resolution Δ17O measurements:

Schoenemann et al., 2014

~15 per meg

• Δ17O shift during glacial-
interglacial transition generally 
agrees with modeled 
expectations

• Duplicate ice core measurements 
generally agree within 12 per 
meg (1σ)

Our goal: improve precision for Δ17O, 
maintain high resolution

• Δ17O measurement precision at South Pole is as good 
as 6 per meg, but consistently only <12 per meg

• Duplicate core measurements suggest some high-
frequency signals are reproducible, but signal-to-
noise ratio could be improved (see inset, above)

• Custom vaporizer uses low-volume flash vaporizer 
tee (Gkinis et al., 2010) to minimize memory effects 
and ensure instantaneous sample evaporation

• Bubbles and particulate (>0.2μm) are removed, then 
sample is metered into vaporizer by peristaltic pump

Modified from Jones et al., 2014

Improved Δ17O measurement precision

• Consistently achieves <6 per meg precision for Δ17O 
with 4000s integration time

• Currently using new 
CFA system to test 
reproducibility of 
measured Δ17O 
from ice cores

Improved Precision of Δ17O Measurements by Laser Spectroscopy
Lindsey Davidge, Eric Steig, Andrew Schauer
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